Covering the Corral

The cows are so modest they want Farmer John to install covers around the circular corral where they occasionally gather. The corral has circumference $\mathrm{C}(1<=\mathrm{C}<=1,000,000,000)$, and FJ can choose from a set of $\mathrm{M}(1<=\mathrm{M}<=100,000)$ covers that have fixed starting points and sizes. At least one set of covers can surround the entire corral.

Cover i can be installed at integer location x_i (distance from starting point around corral) ($0<=$ x_i $<\mathrm{C}$) and has integer length I_i ($1<=\mathrm{I}$ i $<=\mathrm{C}$).

FJ wants to minimize the number of segments he must install. What is the minimum number of segments required to cover the entire circumference of the corral?

Consider a corral of circumference 5, shown below as a pair of connected line segments where both '0's are the same point on the corral (as are both 1's, 2's, and 3's).

Three potential covering segments are available for installation:

As shown, installing segments 2 and 3 cover an extent of (at least) five units around the circumference. FJ has no trouble with the overlap, so don't worry about that.

PROBLEM NAME: corral

INPUT FORMAT:

* Line 1: Two space-separated integers: C and M
* Lines 2.. $\mathrm{M}+1$: Line $\mathrm{i}+1$ contains two space-separated integers: $\mathrm{x} _\mathrm{i}$ and I_i

SAMPLE INPUT

* Line 1: A single integer that is the minimum number of segments required to cover all segments of the circumference of the corral

SAMPLE OUTPUT

