Coin Tosses

You have an unbiased coin which you want to keep tossing till you get N consecutive heads. You've already tossed the coin M times already and surprisingly, all tosses resulted in heads. What is the expected number of tosses needed till you get N consecutive heads?

For example, if $\mathrm{N}=2$ and $\mathrm{M}=0$. You need to keep tossing the coin till you get 2 consecutive heads. It is not hard to show that on an average, 6 coin tosses are needed.

As another example, if $\mathrm{N}=2$ and $\mathrm{M}=1$. You need 2 consecutive heads and have already got 1 . In your first toss, if you get get a heads, you are done. Otherwise, you need to keep tossing the coin till you get 2 consecutive heads. The expected number of coin tosses is thus $1+\left(0.5^{*} 0+\right.$ 0.5 * 6$)=4.0$

Input

The first line contains the number of cases T . Each of the next T lines contains two numbers N and M .

Output

Output T lines containing the answer for the corresponding test case. Print the answer rounded to exactly 2 decimal places.

Constraints

$1<=T<=100$
$1<=\mathrm{N}<=1000$
$0<=\mathrm{M}<=\mathrm{N}$

Sample

Input:
4
20
21
33
32
Output:
6.00
4.00
0.00
8.00

Explanation

The first two samples are explained above. For the third case, you already have got 3 heads, so you do not need any more tosses.

