Attack of the Clones

A boolean function is a function of the form $f: B_{n}->B$, where $B=\{0,1\}$ and n is a non-negative integer called the arity of the function. Some Boolean functions are projections: $p_{n}{ }^{k}\left(x_{1}, \ldots, x_{n}\right)=$ x_{k}. And given an m-ary function f, and n-ary functions g_{1}, \ldots, g_{m}, we can construct another n-ary function: $h\left(x_{1}, \ldots, x_{n}\right)=f\left(g 1\left(x_{1}, \ldots, x_{n}\right), \ldots, g m\left(x_{1}, \ldots, x_{n}\right)\right)$, called their composition. A set of functions closed under composition and containing all projections is called a clone. One trivial clone is a set of all boolean functions. Some of the special clones are:

- Z is a set of 0 -preserving functions: $f(0, \ldots, 0)=0$;
- P is a set of 1 -preserving functions: $f(1, \ldots, 1)=1$;
- D is a set of self-dual functions: !f($\left.x_{1}, \ldots, x_{n}\right)=f\left(!x_{1}, \ldots,!x_{n}\right)$;
- A is a set of affine functions: the functions satisfying that if $f\left(a_{1}, \ldots, c, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, d, \ldots\right.$, $\left.a_{n}\right)$ then $f\left(b_{1}, \ldots, c, \ldots, b_{n}\right)=f\left(b_{1}, \ldots, d, \ldots, b_{n}\right)$, where c and d are at some position i. This should hold for every valid $i, a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{n}, c$ and d.

Now we are interested how many n-ary functions are there in some combinations of mentioned above sets. For example, for $n=2$, there are exactly 8 functions in $Z, 4$ functions in the intersection of Z and $P, 8$ function in the complement of A and so on.

Input

The first line of the input file contains n - the arity of the boolean functions we are looking at. The second line contains the q - number of queries. Each of the next q lines will describe a query. The query is a set expression. The expression will contain the following characters: 'Z', 'P', 'D', 'A' denoting the sets, described above; 'v' - which is set union; ' \wedge ' - which is set intersection; '!' which is complement; 'l' which is set difference; and also '(' and ')' to define operations priority.
Operations in brackets have higher priority. Otherwise the '!' operation has the higher priority and 'v', '^' and 'l' are of the same priority. It is guaranteed that the expression will be correct. See samples for some examples of set expressions.

Constraints

$1<=\mathrm{n}<=100$
$1<=q<=100$
The length of each expression won't exceed 100 characters.

Output

For each query in the input print how many n-ary function are in the set described by the according set expression modulo 1000003.

Example

Input:

$Z^{\wedge} P$
! A
$!(A v P)^{\wedge} D$
$A v Z v P \backslash A$
$!A^{\wedge}(Z \backslash(D v!P))$
Output:
8
4
8
0
6
2

