Captain Claw

Captain Claw is at the bank of a river of acid and he needs to cross it. Thr river is x metres wide but Captain Claw can jump at most d metres.

However, the Captain can jump only on stones which keep appearing in the stream.

Captain Claw

Input

There are multiple test cases. For each test case.
The first line contains n, x and d.
The next n lines denotes subsequent seconds.
For each line, the first integer, c , denotes the number of number of stones appearing in this second.

Then c integers follow.
The ith integer means that a stone would appears at the position of that integer.
Find the minimum time needed by the Captain to cross the river.
$1<=t<=30$
$1<=x<=10^{\wedge} 5$
$1<=\mathrm{d}<=\mathrm{x}$
$1<=\mathrm{n}<=10^{\wedge} 3$
$1<=\operatorname{sum}(c)<=10^{\wedge} 5$

Assumption

Captain Claw is super fast . The time taken by jumps is negligible to a second.

Output

Print a single integer in each line - the time taken to cross the river.
Output -1 if its not possible to cross the river in n seconds.

Example

Input:
1
462
15
13
11
12

Output:
3

Explanation:

Sec 1: Captain Waits
Sec 2: Captain Waits
Sec 3: Captain Jumps from bank(0) -> 1 -> 3 -> 5 -> bank(6)

