## CHT Practice

You can test you CHT implementation in this problem. Problem is simple. You have to solve some queries in the form -
$\mathbf{1 m b}$ : Add a function $f(x)=m x+b$ in a set.
$\mathbf{2 x}$ : For all existing funciton in the set, find the maximum/minimum value of $\left.\left\{f_{i}(\mathbf{x})\right)\right\}$.
You also have some special constrians on the inputs. In a dataset, you have either of the four cases for all queries -

1. $\boldsymbol{m}_{\mathbf{i}}>\mathrm{m}_{\mathrm{i}+1}$, and all queries are for minimum.
2. $m_{i}>m_{i+1}$, and all queries are for maximum.
3. $m_{i}<m_{i+1}$, and all queries are for minimum.
4. $\boldsymbol{m}_{\boldsymbol{i}}<\mathrm{m}_{\mathrm{i}+1}$, and all queries are for maximum.

Furthermore, all quereis of second kind will obey this - $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}+1}$.

## Input

In the first line, you will have a number $Q<=10^{\wedge} 5$, the number of queries. Then a integer $a$, where a denotes the case number (from problem statement), which you'll need to handle in this dataset.

Next $\mathbf{Q}$ lines will contain a number $\mathbf{t}$ first, if it is $\mathbf{1}$ then another two integers will be given $\mathbf{m} \mathbf{b}$, where $|m|,|b|<=10^{\wedge} \mathbf{9}$. Then you need to add the function $f(x)=m x+b$ into set.
if $\mathbf{t}$ is $\mathbf{2}$, then you will be given a number $|\mathbf{x}|<=\mathbf{1 0 \wedge 9}$, you need to answer the query as described.

## Output

For each query of second type, print the desired answer in a seperate line.

## Example

Input:
51
151
14-1
13-2
2-1
23

## Output:

$$
-5
$$

