Sum of divisors

The goal of the problem is to compute the sum of divisor for some integers $\$ \mathrm{~N} \$$.
Assume that number $\$ N=p _0^{\wedge}\left\{e _0\right\} \backslash$ times $p _1^{\wedge}\left\{e_{-} 1\right\} \backslash$ times $\backslash c d o t s ~ p _k \wedge\left\{e _k\right\} \$$, where $\$ p _i \$$ are prime numbers, and \$e_i\$ are positive integers.

Input

The first line of the input consist of a single integer number $\$ \mathrm{t} \$$ which determines the number of tests.

Each test is on two separate lines.
In each test,

- on the first line, there is two integer numbers $\$ k \$$, and $\$ m \$$.
- on the second line, there is $\$ 2(k+1) \$$ integer numbers $\$ p _i \$$ and $\$ \mathrm{e} _\mathrm{i} \$$, with $\$ \mathrm{p} _\mathrm{i} \$$ a prime number.

Constraints

- $\$ 0<t$ Veqslant 256\$;
- \$0 Veqslant k Veqslant 1000\$;
- $\$ 0<m$ Veqslant 2 ltimes $10^{\wedge} 9 \$$;
- $\$ 1<\mathrm{p}$ i <2 2times $10^{\wedge} 9 \$$, a prime number ;
- $\$ 0<\mathrm{e}$ - $\mathrm{i}<2$ 2times10^9\$.

Output

For each test case, you are given a prime factorization of $\$ \mathrm{~N} \$$, you'll have to print the sum of divisors of $\$ \mathrm{~N} \$$, modulo $\$ \mathrm{~m}$ \$.

Example

Input:
3
01000
17,1
2100
2,15,17,2
11000
3,1 1000000007,1

Output:

18
26
32

Explanation

For the first test case, $\$ \mathrm{~N}=17^{\wedge} 1 \$$, whose sum of divisors is $\$ 18 \$$.

For the second test case, $\$ N=2^{\wedge} 1$ times $5^{\wedge} 1$ times $7^{\wedge} 2=490 \$$, whose sum of divisors is $\$? \$$.

