Euler Totient of factorized integer

The goal of the problem is to compute the Euler totient function \$ivarphi(N$)$ \$ for some integers \$N\$.

Assume that number $\$ N=p _0^{\wedge}\left\{e _0\right\}$ limes $p _1^{\wedge}\left\{e_{-} 1\right\}$ times $\backslash c d o t s p _k^{\wedge}\left\{e _k\right\} \$$, where $\$ p _i \$$ are prime numbers, and \$e_i\$ are positive intergers.

You will be given a prime factorization of $\$ N \$$, you'll have to print $\$ \mid \operatorname{varphi}(\mathrm{N})$ lpmod $\mathrm{m} \$$.

Input

The first line of the input consist of a single integer number $\$ \$ \$$ which determines the number of tests.

Each test is on two separate lines.
In each test,

- on the first line, there is two integer numbers $\$ \mathrm{k} \$$, and $\$ \mathrm{~m} \$$.
- on the second line, there is $\$ 2(\mathrm{k}+1)$ \$ integer numbers $\$ p _$i\$ and $\$ \mathrm{e} _\mathrm{i} \$$, with $\$ p _$_ $\$$ a prime number.

Constraints

- $\$ 0$ <t Veqslant 256\$;
- \$0 Veqslant k Veqslant $1000 \$$;
- $\$ 0<m$ Veqslant 2times10^9\$;
- $\$ 1<\mathrm{p}$ _ $\mathrm{<} 2$ 2times10^9 , a prime number ;
- $\$ 0<\mathrm{e}$ _ <2 2limes $10^{\wedge} 9 \$$.

Output

For each test case, print \$lvarphi(N) \pmod $\mathrm{m} \$$.

Example

Input:
3
01000
17,1
2100
2,1 5,1 7,2
11000
3,1 1000000007,1

Output:

16
68
12

Explanation

For the first test case, $\$ N=17^{\wedge} 1 \$$, and $\$ \mid$ varphi $(N) \backslash p m o d ~\{1000\}=16 \$$.
For the second test case, $\$ \mathrm{~N}=2^{\wedge} 1$ \times $5^{\wedge} 1$ \times $7^{\wedge} 2=490 \$$, and $\$ 1$ varphi(N) \pmod $\{100\}=$ 68\$.

For the third test case, $\$ \mathrm{~N}=3^{\wedge} 1$ times $1000000007^{\wedge} 1=3000000021 \$$, and $\$ \backslash$ varphi(N) \backslash pmod $\{1000\}=12 \$$.

