Euler Totient of factorized integer

The goal of the problem is to compute the Euler totient function \$\varphi(N)\$ for some integers \$N\$.

Assume that number $N = p_0^{e_0} \times p_1^{e_1} \times p_k^{e_k}$, where $p_i^{e_1} \times p_i$ are prime numbers, and e_i are positive intergers.

You will be given a prime factorization of \$N\$, you'll have to print \$\varphi(N) \pmod m\$.

Input

The first line of the input consist of a single integer number \$t\$ which determines the number of tests.

Each test is on two separate lines.

In each test,

- on the first line, there is two integer numbers \$k\$, and \$m\$.
- on the second line, there is \$2(k+1)\$ integer numbers \$p_i\$ and \$e_i\$, with \$p_i\$ a prime number.

Constraints

- \$0 < t \leqslant 256\$;
- \$0 \legslant k \legslant 1000\$;
- \$0 < m \legslant 2\times10^9\$;
- \$1 < p_i < 2\times10^9\$, a prime number;
- \$0 < e i < 2\times10^9\$.

Output

For each test case, print \varphi(N) \pmod m\\$.

Example

```
Input:
```

3 0 1000 17,1 2 100 2,1 5,1 7,2 1 1000 3,1 1000000007,1

Output:

16 68 12

Explanation

For the first test case, $N = 17^1$, and $varphi(N) \neq \{1000\} = 16$.

For the second test case, $N = 2^1 \times 5^1 \times 7^2 = 490$, and $\operatorname{hom}(N) \pmod{100} = 68$.

For the third test case, $N = 3^1\times 1000000007^1 = 3000000021$, and $\arctan(N) \pmod{1000} = 12$.