Submit | All submissions | Best solutions | Back to list |
CERI2018H - Polynomial evaluation |
The goal of the problem is to evaluate some polynomial expressions.
$$P(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \cdots + a_{d-1} x^1 + a_{d} x^0$$
Input
The first line of the input consist of a single integer number t which determines the number of tests.
Each test is on two separate lines.
In each test,
- on the first line, there is three integer numbers $d$, $x$, and $m$.
- on the second line, there is $d+1$ integer numbers $a_i$ .
Constraints
- $0 < t \leqslant 400$ ;
- $0 \leqslant d \leqslant 1000$ ;
- $\mid x \mid \leqslant 10^9$ ;
- $\mid a_i \mid \leqslant 10^9$ ;
- $1 < m \leqslant 2\times10^9$.
Output
For each test case, print $P(x) \pmod m$.
Example
Input: 3 0 3 1000 4321 3 10 1000000000 2 0 1 8 5 123456789 1000000007 -1 1 -1 1 -1 1 Output: 321 2018 715709281
Explanation
For the first test case, $P(x) = 4321$, $P$ is a constant polynomial, and $P(3) \pmod {1000} = 321$.
For the second test case, $P(x) = 2x^3 + x + 8$, and $P(10) \pmod {1000000000} = 2018$.
For the third test case, $P(x) = -x^5 + x^4 - x^3 + x^2 - x +1$.
Added by: | Francky |
Date: | 2018-05-08 |
Time limit: | 1s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All |
hide comments
2018-05-08 14:13:54 wisfaq
The modulo's in the explanation aren't formatted correctly. Probably a Tex problem. =(Francky)=> Thanks ; fixed. Last edit: 2018-05-08 14:54:36 |