Break a cryptosystem

We denote \$lvarphi\$ the Euler's totient function.
The goal of the problem is to crack a message using a simplified RSA cryptosystem.
Here $\$(n, e) \$$ denotes the public key, and $\$ \mathrm{c} \$$ a crypted message.

Input

The first line of the input consist of a single integer number t which determines the number of tests.

In each of next t lines there is three integer numbers n, e and c.

Constraints

- $0<\mathrm{t} \leq 10000$
- $0<\mathrm{n} \leq 100000000$, is the product of two distinct prime numbers (p, q)
- $0<\mathrm{e} \leq 100000000$, is coprime with \$lvarphi(n)\$
- $0 \leq \mathrm{c}<\mathrm{n}$

Output

Print \$m\$ such that

- the result of $\$ m^{\wedge} \mathrm{e} \$$ modulo $\$ \mathrm{n} \$$ is equal to $\$ \mathrm{c} \$$;
- \$0Veq $\mathrm{m}<\mathrm{n} \$$.

That is the decrypted message. You have to break this cryptosystem !

Example

Input:
1
55718
Output:
2

