Permutation Game

Harsha is given 9 integers $a_{1}, a_{2}, a_{3}, \ldots . a_{9}$. This denotes that he is given $a_{1} 1$'s, $a_{2} 2$'s,...... $a_{9} 9$'s. Let ' x ' $=\left(a_{1}+a_{2}+\ldots a_{g}\right)$. Now, Harsha makes all possible ' x ' digit numbers by using these given digits. Let S be the set of all such numbers which he makes. Now he constructs a directed graph containing $|S|$ nodes, in which each node denotes a unique number from the set. For all numbers u, v belonging to S, there is a directed edge from node ' u ' to node ' v in the graph iff $u>v$. It is easy to note that we obtain a directed acyclic graph. Whats more, the edges of the graph are weighted. The weight of an edge joining node ' u ' and node ' v ' is equal to $u+v$. Now, Deepak decides to test Harsha's memory and gives him 'Q' queries. Each query consists of two numbers 'u', 'v' (u>v, both belonging to the set S). For each query Harsha must provide the following answers:

1) How many distinct paths are there from node 'u' to node 'v' in the graph.
2) For each distinct path 'i' from node 'u' to node 'v', let S_{i} denote the sum of weights of all edges on this path. Calculate the value of sum $\left(\mathrm{S}_{\mathrm{i}}\right)$, for every distinct path 'i' from node 'u' to node 'v'.

Input

The first line of input contains 9 integers $a_{1}, a_{2}, \ldots . a_{g}$. The second line contains a single integer ' Q ', denoting the number of queries. Each of the next 'Q' lines contain 2 numbers ' u ' and 'v'.

Output

For each query, output 2 space separted integers denoting the number of distinct paths and sum of weights of all paths respectively. Since the output can be large, output these quantities modulo 1000000007.

Two paths $\left(v_{1}, v_{2}, \ldots . v_{m}\right)$ and $\left(u_{1}, u_{2}, \ldots . u_{n}\right)$ are distinct if:

1) $m!=n$
2) $\mathrm{m}=\mathrm{n}$, there exists some index ' k ' $(1<=\mathrm{k}<=\mathrm{m})$ such that $\mathrm{v}_{\mathrm{k}}!=\mathrm{u}_{\mathrm{k}}$

Example

Input:

201000000
1
311113

Output:

21110

Constraints:

$1<=\left(a_{1}+a_{2}+\ldots . a_{9}\right)<=500$
$1<=Q<=20$
$a_{i}>=0$

Explanation:

Test case 1: The set S for the above problem is $\{311,113,131\}$. The edges of the graph are 311-
$>131,311->113,131->113$. There are 2 distinct paths from 311 to 113 , namely ($311->131->113$) and $(311->113)$. The sum of weights of edges on path $-1=(311+131)+(131+113)=686$. For path2 , the sum of weights of edges $=(311+113)=424$. Therefore, answer $=686+424=1110$.

