Recover Polynomials

Venkatesh is an expert in mathematics, and loves playing around with polynomials during his free time. His favourite mathematical equation is pretty obviously: $f(x)=a_{n}{ }^{*} x^{n}+a_{n-1}{ }^{*} x^{n-1}+\ldots . .+$ $a_{1}{ }^{*} x+a_{0}$. His friend Suhash loves posing challenges to Venkatesh. Once they were discussing a particular problem at Snacky, which goes as follows:

Suhash would choose an integer ' n ' as the degree of the polynomial and give Venkatesh the value of the polynomial at ' $n+1$ ' equally spaced points, i.e he gives Venkatesh integers ' n ', ' x_{0} ', ' d ' and $g_{0}, g_{1}, g_{2}, \ldots, g_{n}$ such that: $f\left(x_{0}\right)=g_{0}, f\left(x_{0}+d\right)=g_{1}, f\left(x_{0}+2^{*} d\right)=g_{2}, \ldots . . . f\left(x_{0}+n^{*} d\right)=g_{n}$. Now, Venkatesh is required to find the polynomial. Since he hates floating point values, he decides to find the polynomial in coefficient form, modulo a prime number. Can you help Venkatesh find the polynomial?

Input

The first line of input contains an integer ' t ', denoting the number of test cases.
For each test case, the first line contains 3 space separated integers ' n ', ' x_{0} ', ' d '. The next line contains ' $n+1$ ' space separated integers $g_{0}, g_{1}, g_{2}, \ldots . . g_{n}$.

Output

For each test case output ' $n+1$ ' integers, denoting the coefficients of the polynomial $a_{0}, a_{1}, a_{2}, \ldots \ldots$. a_{n}. All the coefficients that are printed should be non-negative and should be less than 1000000007.

You are required to find coefficients of the polynomial $a_{0}, a_{1}, a_{2}, \ldots . . . a_{n}$, which satisfy the equations: $f\left(x_{0}\right) \% 1000000007=g_{0}, f\left(x_{0}+d\right) \% 1000000007=g_{1}, \ldots \ldots . . f\left(x_{0}+n^{*} d\right) \% 1000000007=g_{n}$. It is guarenteed that there is a unique solution for every test case.

Example

Input:

1
311
102658112

Output:

4321

Constraints:

$\mathrm{t}<=25$
$1<=\mathrm{n}<=1000$
$0<=x_{0}<=100000$
$0<d<=10000$
$0<=g_{i}<=10^{\wedge} 9$

Explanation:

Test case 1: It can be seen that the polynomial $f(x)=x^{3}+2^{*} x^{2}+3^{*} x+4$ satisfies the above input.

