Traversing Grid

Given 2 points in 2 dimensional space (xs,ys) and (xd,yd), your task is to find whether ($x d, y d$) can be reached from (xs,ys) by making a sequence of zero or more operations.
From a given point (x, y), the operations possible are:
a) Move to point (y, x)
b) Move to point ($x,-y$)
c) Move to point ($x+y, y$)
d) Move to point ($2^{*} x, y$)

Input

The first line of input contains T, the number of test cases. T lines follow, one for each test case. For each test case, the input contains one line denoting the 4 integers xs, ys, xd, yd

Output

Output T lines, one for each test case. For each test case, output "YES" if ($x d, y d$) is reachable from (xs,ys) and "NO" otherwise. (quotes for clarity)

Example

Input:

1
1122

Output:

YES

Constraints:

T <= 25
$-10^{\wedge} 10<=x s, y s, x d, y d<=10^{\wedge} 10$
Note that, although the input values are constrained by the above inequality, the coordinates of the points at the intermediate steps need not be.

Explanation:

Test case 1: We can move in the following manner: $(1,1)->(2,1)$, using the operation $(x, y)->$ $\left(2^{*} x, y\right)$. Then, move from $(2,1)->(1,2)$, using the operation $(x, y)->(y, x)$. Finally use the operation $(x, y)->\left(2^{*} x, y\right)$ to move from $(1,2)->(2,2)$.

