Board

Consider a board with fields numbered from 0 to n. On each field $i \in\{1, \ldots, n\}$ there is an integer (possibly negative) number $a_{i} \in \mathbb{Z}$. A player is given a pawn on field number 0 . Player can move the pawn back and front on distance not exceeding k. A pawn can visit all the fields many 0 and n many times, but it can stop moving definitively only at position n (player decides on when to stop). Whenever a pawn visits field i, the field is cleared and the number a_{i} is removed (if the field wasn't clear before the move). A player wants to maximize the sum of numbers on non-cleared fields.

Write a program that reads on the standard input the description of a game, and writes on standard output the value of an optimal strategy. On the first line of input you are given the number $n(1 \leq n \leq 1000)$. On the second line of input you are given the parameter $k(1 \leq k \leq n)$. In the next $n-1$ lines of the input you are given single integer numbers, where on line $i+2$ you are given the number a_{i}. There are no values given for fields 0 and n, because these positions will be always clear at the end of the game.

Example

For the input:
5
5
15
5
8
15
the answer is:
43
And for the input
5
2
15
5
8
15
the answer is:
30

