Bit Difference

Given an integer array of N integers, find the sum of bit differences in all the pairs that can be formed from array elements. Bit difference of a pair (x, y) is the count of different bits at the same positions in binary representations of x and y. For example, bit difference for 2 and 7 is 2 . Binary representation of 2 is 010 and 7 is 111 (first and last bits differ in two numbers).

Input

Input begins with a line containing an integer $\mathbf{T}(\mathbf{1}<\mathbf{=} \mathbf{T}<=\mathbf{1 0 0})$, denoting the number of test cases. Then T test cases follow. Each test case begins with a line containing an integer $\mathbf{N}(1<=\mathbf{N}<=\mathbf{1 0 0 0 0})$, denoting the number of integers in the array, followed by a line containing \mathbf{N} space separated 32-bit integers.

Output

For each test case, output a single line in the format Case \mathbf{X} : \mathbf{Y}, where \mathbf{X} denotes the test case number and \mathbf{Y} denotes the sum of bit differences in all the pairs that can be formed from array elements modulo 10000007.

Example

Input:

1
4
3214

Output:

Case 1: 22

