Begin

Begin a sequence of distinct natural numbers $\mathrm{Ni}, \mathrm{i}=0,1,2, \ldots$, with the number $\mathrm{B}(=\mathrm{N} 0)$; generate numbers $\mathrm{Ni}, \mathrm{i}=1,2, \ldots$, recursively and end the sequence with the last generated number E . The characteristic of numbers and the process for generation are stated below:

* Each number in the sequence contains an even number of decimal digits and is of the form f 1 d 1 f 2 d 2 fk ...dk where $\mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dk}$, are k distinct digits in increasing order and each fj is a nonzero digit.
* For $\mathrm{i}=0,1,2, \ldots$, if $\mathrm{Ni}=\mathrm{f1d} 1 \mathrm{f} 2 \mathrm{~d} 2 . . . f \mathrm{fkk}$ then $\mathrm{Ni}+1=$ F1D1F2D2...FKDK , where $\mathrm{K}>=\mathrm{k}$; D1, D2,..., DK , are distinct digits that occur in Ni and appear in increasing order in $\mathrm{Ni}+1$; and FJ is the frequency of DJ in Ni , for $\mathrm{J}=1,2, \ldots, \mathrm{~K}$. For example if $\mathrm{Ni}=102335$ then $\mathrm{Ni}+1=1011122315$.

Write a program to find for a given E , the longest sequence of numbers that ends with E and begins with the smallest B.

Again consider an example; if $\mathrm{E}=1011122315$ then the required sequence of numbers is 303355 1033251011122315.

Input

The input may contain multiple test cases.
Each test case contains only one input, viz., E.
The input terminates when a line containing 0 appears as a test case.

Output

For each test case, print the longest sequence of numbers that ends with E and begins with the smallest B . Use space to separate two consecutive numbers in the sequence.

Example

Sample Input

1011122315
22
112213
0

Sample Output

3033551033251011122315
22
13111331132123112213

