Base Conversion (Easy)

We want to make some base-conversion experiments. Here you can try basic methods.

Input

The first line of input contains three integers \boldsymbol{T}, the number of test cases, $\boldsymbol{B 1}$, the first base, \boldsymbol{B}, the second base.
Follow $2 \times T$ lines.
For each test case, on the first line your are given one integer \boldsymbol{k}.
On the second line you are given \boldsymbol{k} integers : the digits of \boldsymbol{N} in base $\boldsymbol{B} 1$.
$N=a_{0} \times B 1^{0}+\ldots+a_{i} \times B 1^{i}+\ldots+a_{k-1} \times B 1^{k-1}$

Output

For each test case, you have to print the number \boldsymbol{N} in base $\boldsymbol{B 2}$. See sample for details.

Example

Input:

110100
5
54321
Output:
3 <--- Don't forget the length of N in base B2 ;-)
45231

Explanations

For the lonely case, $N=5 \times 10^{0}+4 \times 10^{1}+3 \times 10^{2}+2 \times 10^{3}+1 \times 10^{4}=12345$.
We have: $N=45 \times 100^{0}+23 \times 100^{1}+1 \times 100^{2}$. You have to print 3 , the number of digits, then the digits: 45,23 and 1.

Constraints

```
\(0<\mathrm{T}<=200\)
\(1<B 1, \mathrm{~B} 2<=10^{\wedge} 9\)
\(1<k<=1000\)
\(0<=\mathrm{a}_{\mathrm{i}}<\mathrm{B} 1, \mathrm{a}_{\mathrm{k}-1}>0\)
```

If you find the constraints too easy, then you should try BASECONV.
The basic solution should give AC in 1.56 s with Python 3 .
Have fun ;-)

