Barn Allocation

Farmer John recently opened up a new barn and is now accepting stall allocation requests from the cows since some of the stalls have a better view of the pastures.

The barn comprises $\mathrm{N}(1<=\mathrm{N}<=100,000)$ stalls conveniently numbered 1..N; stall i has capacity C_i cows ($1<=$ C_i $<=100,000$). Cow i may request a contiguous interval of stalls ($\mathrm{A} _\mathrm{i}, \mathrm{B}$ _i) in which to roam ($1<=\mathrm{A} _\mathrm{i}<=\mathrm{N} ; \mathrm{A} _\mathrm{i}<=\mathrm{B} _\mathrm{i}<=\mathrm{N}$), i.e., the cow would like to wander among all the stalls in the range A_i..B_i (and the stalls must always have the capacity for her to wander).

Given $\mathrm{M}(1<=\mathrm{M}<=100,000)$ stall requests, determine the maximum number of them that can be satisfied without exceeding stall capacities.

Consider both a barn with 5 stalls that have the capacities shown and a set cow requests:

Stall id: 122345
Capacity: $|1| 3|2| 1|3|$
+---+---+---+------+
Cow $1 \quad \mathrm{XXXXXXXXXXX} \quad(1,3)$
Cow $2 \quad X X X X X X X X X X X X X X X \quad(2,5)$
Cow 3 XXXXXXX $(2,3)$
Cow $4 \quad X X X X X X X \quad(4,5)$
FJ can't satisfy all four cows, since there are too many requests for stalls 3 and 4.

Noting that Cow 2 requests an interval that includes stalls 3 and 4 , we test the hypothesis that cows 1,3 , and 4 can have their requested stalls. No capacity is exceeded, so the answer for this set of data is 3 -- three cows (1,3, and 4) can have their requests satisfied.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2.. $\mathrm{N}+1$: Line $\mathrm{i}+1$ contains a single integer: C_i
* Lines $\mathrm{N}+2 . . \mathrm{N}+\mathrm{M}+1$: Line $\mathrm{i}+\mathrm{N}+1$ contains two integers: A i and B_i

Output

* Line 1: The maximum number of requests that can be satisfied

Example

Input:
54
1

3

2
1
3
13
25
23
45

Output:

3

