A Summatory (HARD)

$f(n)$ is defined as: $f(n)=1^{k}+2^{k}+3^{k}+\ldots+n^{k}$, so it is the sum of the k-th power of all natural numbers up to n.

In this problem you are about to compute,
$f(1)+f(2)+f(3)+\ldots+f(n)$

Input

The first line is an integer $\mathbf{T}(1 \leq \mathbf{T} \leq 54,321)$, denoting the number of test cases. Then, \mathbf{T} test cases follow.

For each test case, there are two integers $\mathbf{n}(1 \leq \mathbf{n} \leq 123,456,789)$ and $\mathbf{k}(0 \leq \mathbf{k} \leq 321)$ written in one line, separated by space.

Output

For each test case output the result of the summatory function described above.
Since this number could be very large, output the answer modulo $1,234,567,891$.

Example

Input:
5
23
103
33
1000
1001
Output:
10
7942
46
5050
171700
Warning: A naive algorithm may not run in time

See also: Another problem added by Tjandra Satria Gunawan

