Rotating Rings

Any square grid can be viewed as one or more rings, one inside the other. For example, as shown in figure (a), a 5×5 grid is made of three rings, numbered 1, 2 and 3 (from outside to inside.) A square grid of size N is said to be sorted, if it includes the values from 1 to $\mathrm{N}^{\wedge} 2$ in a row-major order, as shown in figure (b) for $\mathrm{N}=4$. We would like to determine if a given square grid can be sorted by only rotating its rings. For example, the grid in figure (c) can be sorted by rotating the first ring two places counter-clockwise, and rotating the second ring one place in the clockwise direction.

Figure (a)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Figure (b)

9	5	1	2
13	7	11	3
14	6	10	4
15	16	12	8

Figure (c)

Input

Your program will be tested on one or more test cases. The first input line of a test case is an integer N which is the size of the grid. N input lines will follow, each line made of N integer values specifying the values in the grid in a row-major order. Note than 0

The end of the test cases is identified with a dummy test case with $\mathrm{N}=0$.

Output

For each test case, output the result on a single line using the following format:
k. result

Where k is the test case number (starting at 1,) and result is "YES" or "NO" (without the double quotes.) and single space between "." and "result".

Sample

Input:

4
9512
137113
146104
1516128
3
123
567
894
0
Output:

1. YES
