Power Factor Sum Sum (hard)

Here is a mixed edition of <u>Divisor Summation Powered</u> and <u>Amazing Factor Sequence</u> (medium).

The powered factor sequence

For *k* an integer number, we define our powered factor sequence with:

a_k[0] = 0; a_k[1] = 1, and

for n > 1, $a_k[n] = a_k[n - 1] + sum(\{x^k | 0 < x \le n \text{ and } n \ \% \ x = 0\})$.

Input

First line of input contains an integer **T**, the number of test cases.

Each of the next *T* lines contains three integers *n*, *k*, *m*.

Output

For each test case, print $a_k[n]$ on a single line. As the answer could be a big number, you just have to output it modulo m.

Example

Output:

8 37 43

Constraints

0 < T < 101 0 < n < 10⁹ 0 < k < 11 1 < m < 10¹⁷

Numbers *n, k, m* are uniform-randomly chosen.

For your information, there's two input files, the first one is 'easy' with $n \le 100$. My (1kB)-python code get AC around 2.4s. I have a much slower basic PIKE AC (19s).