Power Factor Sum Sum (hard)

Here is a mixed edition of Divisor Summation Powered and Amazing Factor Sequence (medium).

The powered factor sequence

For \boldsymbol{k} an integer number, we define our powered factor sequence with:
$a_{k}[0]=0 ; a_{k}[1]=1$, and
for $n>1, a_{k}[n]=a_{k}[n-1]+\operatorname{sum}\left(\left\{x^{\wedge} k \mid 0<x \leq n\right.\right.$ and $\left.\left.n \% x=0\right\}\right)$.

Input

First line of input contains an integer \boldsymbol{T}, the number of test cases.
Each of the next \boldsymbol{T} lines contains three integers $\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{m}$.

Output

For each test case, print $\boldsymbol{a}_{\boldsymbol{k}}[\boldsymbol{n}]$ on a single line.
As the answer could be a big number, you just have to output it modulo \boldsymbol{m}.

Example

Input:
3
3110
4255
5397

Output:

8
37
43

Constraints

```
0<T<101
0<n< 10^9
0<k<11
1<m<10^17
```

Numbers $\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{m}$ are uniform-randomly chosen.
For your information, there's two input files, the first one is 'easy' with $\mathrm{n} \leq 100$.
My (1kB)-python code get AC around 2.4 s . I have a much slower basic PIKE AC (19s).

