PROG0317 - Wind chill

You are probably familiar with the phenomenon of wind chill and would not be surprised to hear that there are several methods to determine the wind chill factor based on the temperature and the wind speed. One of those methods is the JAG/TI method (Joint Action Group on Weather Indices). This Canadian method incorporates a modern heat transfer theory. If the temperature in °C at 1.50 metres altitude is represented by $T$ and the mean wind speed in m/s at 10 metres altitude for the past ten minutes is represented by $W$, it is possible to determine the wind chill factor with the following formula: $$13.12 + 0.6215\,T + (0.3965\,T - 11.37)(3.6\,W)^{0.16}$$

The wind chill is felt by a healthy adult of average height who is walking. The sun is of no importance for the calculation, but does cause a warmer feeling than the actual wind chill factor. Walking with the wind in your back also changes the experience.

Input

The input consists of the following real numbers, each on a separate line:

  • temperature $T$ in °C
  • wind speed $W$ in km/h

Output

The output consists of one real number which reflects the wind chill factor according to the previous formula. There is no need for rounding off.

Example

Input:

10.0
5.0

Output:

9.755115709161835

Je kent zeker het fenomeen dat je bij felle wind de koude des te meer aanvoelt dan wanneer het windstil is. Dit fenomeen noemt men met een Engelse term wind chill. Het zal je ook niet verbazen dat er verschillende methoden bestaan om te bepalen wat nu juist de gevoelstemperatuur is voor een gegeven luchttemperatuur en windsnelheid. Een van die methoden is de JAG/TI-methode (Joint Action Group on Weather Indices). Deze in Canada ontwikkelde methode is gebaseerd op het warmtetransport van het lichaam naar de huid. Als de temperatuur in °C op 1,50 meter hoogte gegeven wordt door $T$ en de gemiddelde windsnelheid in de afgelopen tien minuten in m/s op 10 meter hoogte gegeven wordt door $W$, dan kan je de gevoelstemperatuur berekenen met de volgende formule: $$13,12 + 0,6215\,T + (0,3965\,T - 11,37)(3,6\,W)^{0,16}$$

De gevoelstemperatuur geldt voor een gezond, volwassen en wandelend persoon van gemiddelde lengte. De zon speelt geen rol in de berekeningsmethode, maar bij zonnig weer voelt het minder koud aan dan de berekende gevoelstemperatuur doet vermoeden. Ook wanneer je met de wind in de rug wandelt, zal het minder koud aanvoelen.

Invoer

De invoer bestaat uit de volgende twee reële getallen, die elk op een afzonderlijke regel staan:

  • de luchttemperatuur $T$ in °C
  • de windsnelheid $W$ in km/u

Uitvoer

De uitvoer bestaat uit één reëel getal dat de gevoelstemperatuur geeft volgens bovenstaande formule. Je hoeft je resultaat niet af te ronden.

Voorbeeld

Invoer:

10.0
5.0

Uitvoer:

9.755115709161835

Added by:Peter Dawyndt
Date:2013-02-05
Time limit:10s
Source limit:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Languages:PY_NBC
Resource:None

© Spoj.com. All Rights Reserved. Spoj uses Sphere Engine™ © by Sphere Research Labs.